A green chemistry approach to a more efficient asymmetric catalyst: solvent-free and highly concentrated alkyl additions to ketones.
نویسندگان
چکیده
There is a great demand for development of catalyst systems that are not only efficient and highly enantioselective but are also environmentally benign. Herein we report investigations into the catalytic asymmetric addition of alkyl and functionalized alkyl groups to ketones under highly concentrated and solvent-free conditions. In comparison with standard reaction conditions employing toluene and hexanes, the solvent-free and highly concentrated conditions permit reduction in catalyst loading by a factor of 2- to 40-fold. These new conditions are general and applicable to a variety of ketones and dialkylzinc reagents to provide diverse tertiary alcohols with high enantioselectivities. Using cyclic conjugated enones, we have performed a tandem asymmetric addition/diastereoselective epoxidation using the solvent-free addition conditions followed by introduction of a 5.5 M decane solution of tert-butyl hydroperoxide (TBHP) to generate epoxy alcohols. This one-pot procedure allows access to syn epoxy alcohols with three contiguous stereocenters with excellent enantio- and diastereoselectivities and high yields. Both the solvent-free asymmetric additions and asymmetric addition/diastereoselective epoxidation reactions have been conducted on larger scale (5 g substrate) with 0.5 mol % catalyst loadings. In these procedures, enantioselectivities equal to or better than 92% were obtained with isolated yields of 90%. The solvent-free and highly concentrated conditions are a significant improvement over previous solvent-based protocols. Further, this chemistry represents a rare example of a catalytic asymmetric reaction that is highly enantioselective under more environmentally friendly solvent-free conditions.
منابع مشابه
Tonsil Clay as a Green Catalyst for Rapid and Efficient Reduction of Aldehydes and Ketones with NaBH3CN
Reduction of aldehydes and ketones to the corresponding alcohols in the presence of sodium cyanoborohdride as reductive agent and Tonsil clay as catalyst under solvent free conditions was investigated. Tonsil (catalyst) decreased the reduction time of each aldehyde and ketone to proportional alcohols in comparison with their reduction in the absence of catalyst with high degree purity of alcoho...
متن کاملOne-pot Efficient Oximation-Beckmann Rearrangement of Ketones Catalyzed by Fe3O4 Under Solvent-free Conditions
Fe3O4 nanoparticles were employment as an efficient and magnetically separable Nano catalyst for the synthesis of amides via one-pot Beckmann rearrangement of ketones under solvent-free conditions. Various secondary amides were synthesized by this method in moderate to good yields. The catalyst showed high thermal stability and was recovered and reused at least five times without any considerab...
متن کاملFe3O4@SiO2-SO3H as a recyclable heterogeneous nanomagnetic catalyst for the one-pot synthesis of substituted quinolines via Friedländer heteroannulation under solvent-free conditions
An efficient method has been developed for the Friedländer synthesis of substituted quinolines through a condensation reaction of 2-aminoaryl ketones with α-methylene ketones in the presence of a catalytic amount of nano Fe3O4@SiO2-SO3H under solvent-free conditions at 110 °C. The reactions are completed in short times, and the products are obtained in good to excellent yields. The results reve...
متن کاملMelamine trisulfonic acid as a highly efficient catalyst for the synthesis of polyhydroquinolines under solvent-free conditions
A highly efficient, simple and clean solvent-free protocol for the synthesis of polyhydroquinolines is described. The one-pot multi-component condensation reaction between arylaldehydes, dimedone (5,5-dimethylcyclohexane-1,3-dione), β-ketoesters and ammonium acetate in the presence of catalytic amount of (2.5 mol%) melamine trisulfonic acid (MTSA) as a recyclable, green and attractive sulfonic ...
متن کاملHighly efficient and rapid synthesis of diverse hydantoin derivatives using nano-ordered ZnO catalyst under mechanochemical ball milling
A mild and efficient one-pot three-component and environmentally benign approach for the synthesis of a wide range of hydantoin annulated derivatives has been described. A multi-component reaction between a carbonyl compounds (ketone or aldehyde), potassium cyanide and ammonium carbonate (as cyanating agent and amine source, respectively leads to the formation of hydantoins. The proposed optimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 127 47 شماره
صفحات -
تاریخ انتشار 2005